opencv/sec5.ObjectRecognition
¤ÎÊÔ½¸
http://sunshine.s58.xrea.com/x/pukiwiki/index.php?opencv/sec5.ObjectRecognition
[
¥È¥Ã¥×
] [
ÊÔ½¸
|
º¹Ê¬
|
¥Ð¥Ã¥¯¥¢¥Ã¥×
|
źÉÕ
|
¥ê¥í¡¼¥É
] [
¿·µ¬
|
°ìÍ÷
|
ñ¸ì¸¡º÷
|
ºÇ½ª¹¹¿·
|
¥Ø¥ë¥×
]
-- ¿÷·Á¤È¤¹¤ë¥Ú¡¼¥¸ --
2006ǯÅÙ¥½¥Õ¥È¥Ü¡¼¥ë
20061114dvd
androidÆüµ/2010ǯ01·î
androidÆüµ/20100211AndroidMAP
BracketName
Dell Precision 470
elimi/2007Å·¶¶Î©YH
elimi/2008±ÛÁ°¡¦ÈþÇ»¥Ä¥¢¡¼
elimi/20061019Éú¸«
elimi/20061105¥ª¥¤¥ë¥Á¥§¥Ã¥¯
elimi/¥ª¥¤¥ë¸ò´¹20060731
elimi/¥ª¥¤¥ë¸ò´¹20070806
elimi/¥Ö¥ì¡¼¥¤ÎÌĤ
elimi/¥Ø¥ë¥á¥Ã¥È
elimi/¥ä¥Õ¥ª¥¯
elimi/¼ÖÂÎÈÖ¹æ
elimi/½¤ÍýÂç²ñ20070414
elimi/Ë̳¤Æ»Î¹¹Ô2007
Fedora8¥¤¥ó¥¹¥È¡¼¥ë¸Ä¿ÍŪ¥Î¡¼¥È
FormattingRules
InterWiki
lab
lab/20071107kitchen
lab/20180204¥Ü¥ê¥Ó¥¢ÌµÀþ
lab/µ»½Ñ¾ðÊó/androidNDKr4b
lab/µ»½Ñ¾ðÊó/BeautoChaser
lab/µ»½Ñ¾ðÊó/e-mobile
lab/µ»½Ñ¾ðÊó/e-mobile/DL®ÅÙ¥á¥â
lab/µ»½Ñ¾ðÊó/Fedora10OnAspireOne/e-mobile_D02HW
lab/µ»½Ñ¾ðÊó/Fedora10OnAspireOne/̵ÀþLAN
lab/µ»½Ñ¾ðÊó/HotplugOnDellPrecision470
lab/µ»½Ñ¾ðÊó/icpc+openmp
lab/µ»½Ñ¾ðÊó/iiyamaProLiteL400W
lab/µ»½Ñ¾ðÊó/iiyamaProLiteL400W¤ò¥·¥ê¥¢¥ë¤«¤é¥³¥ó¥È¥í¡¼¥ë
lab/µ»½Ñ¾ðÊó/KDE4.1.1onFC9
lab/µ»½Ñ¾ðÊó/kwriteOnKDE4.1.1
lab/µ»½Ñ¾ðÊó/MPIrubyOnFC9
lab/µ»½Ñ¾ðÊó/openCVonFCC
lab/µ»½Ñ¾ðÊó/openCVonFCC/test
lab/µ»½Ñ¾ðÊó/openCVonFCC/ºÇ½ªÈÇ
lab/µ»½Ñ¾ðÊó/openMPonFedora8withICC
lab/µ»½Ñ¾ðÊó/pillow
lab/µ»½Ñ¾ðÊó/udevOnFedora
lab/µ»½Ñ¾ðÊó/WinVistaOnAcreAspireOne
lab/µ»½Ñ¾ðÊó/¥Ñ¥é¥Ü¥é¥¢¥ó¥Æ¥Ê
lab/µ»½Ñ¾ðÊó/¥Ñ¥é¥Ü¥é¥¢¥ó¥Æ¥Ê/¥¢¥×¥ê³«È¯
lab/ÈþÇ»¸¦µù¶È¶¨Æ±Áȹç
mixi¤Ë¥í¥°¥¤¥ó¤Ç¤¤Ê¤¤
plymouth
PukiWiki
PukiWiki/1.4
PukiWiki/1.4/Manual/Plugin
PukiWiki/1.4/Manual/Plugin/E-G
PukiWiki/1.4/Manual/Plugin/L-N
PukiWiki/1.4/Manual/Plugin/O-R
PukiWiki/1.4/Manual/Plugin/S-U
RecentDeleted
SandBox
tmp
toeic.20071028
Top Bewertet Poker Tricks
TopPage
try the discounts below
try the promo codes below
viva½ÐÄ®
What Kind of American Casino Slot Games No Deposit Bonus is Available
WikiEngines
WikiName
¤ª¤â¤¤¤Ä¤/20070310
¤ªµ¤¤ËÆþ¤ê¤Î¤ªÅ¹
¤ªµ¤¤ËÆþ¤ê¤Î¤ªÅ¹/20070614ergo bibamus
¤«¤±¤Ä¤®
¤Û¤·¤¤¤â¤Î¥ê¥¹¥È
¥Õ¥é¥ï¡¼¥¬¡¼¥Ç¥ó¥·¥ç¡¼
¥Õ¥ì¥Ã¥Ä¸÷¥×¥ì¥ß¥¢¥à
¥Ø¥ë¥×
¥Û¥Æ¥ë¡¡¥ì¥¸¡¼¥ÊµþÅÔ
±º°Â
±º°Â/¥«¡¼¥Ô¥«¥é¥ó¥É±º°Â20110522
±º°Â/¥Ð¥¤¥¯ÍÑÉÊŹ¥ì¡¼¥·¥ó¥°¥ï¡¼¥ë¥É±º°ÂŹ
±ÑBBCÊüÁ÷¤¬6Æü¸øÉ½¤·¤¿¹ñºÝÀ¤ÏÀÄ´ºº
¸òḀ̈ݡ¼¥¿¥ë
¸òḀ̈ݡ¼¥¿¥ë/¹áÀ¹â¾¾»Ô¹ñʬ»ûÄ®¥³¥ß¥å¥Ë¥Æ¥£¥Ð¥¹
¸òḀ̈ݡ¼¥¿¥ë/»Í¹ñ¥Õ¥§¥ê¡¼
¹áÀ/µÌÃÓ/ʸ¸¥
¹áÀ/µÌÃÓ/ʸ¸¥/¹ñʬ»ûÄ®Á´¿Þ_¹áÀîåѰ½²Î·´(1900)
¹áÀ/µÌÃÓ/ʸ¸¥/»¾´ô¤Î¤¿¤áÃÓ»ï
¼Ì·Ð
½¢¿¦³èư
À¾µÜ
À¾µÜ/¥¤¥ó¥¿¡¼¥Í¥Ã¥È²óÀþ20180506
ͼã¼ê¸¦µæ²ñ2007½©
Åл³/2007.Apr.ÉðÆà¥ö³Ù
Åл³/2007.June.°Ë¿á»³
Åл³/2009.Mar.̸Å绳
Åл³/2009.Oct.̯¹â»³
Åл³/2010.Sept.Çò»³
ÆüËܸì
È÷˺/»¾´ô¥«¥ó¥È¥ê¡¼¥¯¥é¥Ö
ʪ·ïõ¤·2008/pics.¥á¥¾¥ó¥É¥¹¥º
...
quotation@opencv-1.0.0/docs/opencvman_old.pdf *5 Object Recognition [#y165de99] **Eigen Objects [#oaf5f32d] This section describes functions that operate on eigen objects. Let us define an object u = { u 1, u 2 ¡Ä, u n } as a vector in the n-dimensional space. For example, u can be an image and its components ul are the image pixel values. In this case n is equal to the number of pixels in the image. Then, consider a group of input objects u i = { ui, u i, ¡Ä, u i } , where i = 1, ¡Ä, m and usually m << n. The averaged, or 1 2 n mean, object u = { u 1, u 2, ¡Ä, u n } of this group is defined as follows: m 1 ô ul . k u l = --- m k=1 m¡ßm Covariance matrix C = |cij| is a square symmetric matrix : n ô i j ( ul ? ul ) ? ( ul ? ul ) . c ij = l=1 Eigen objects basis e i = { e i, ei, ¡Ä, e i } , i = 1, ¡Ä , m1 ? m of the input objects group 1 2 n may be calculated using the following relation: m 1 ô vk ? ( ul ? ul ) , i i k = --------- - el ¦Ëi k=1 i i i i where ¦Ëi and = { v 1 , v2 , ¡Ä, v m } are eigenvalues and the corresponding eigenvectors v of matrix C. 5-1 Any input object ui as well as any other object u may be decomposed in the eigen objectsnm1-D sub-space. Decomposition coefficients of the object u are: ô el ? ( u l ? u l ) . i wi = l=1 Using these coefficients, we may calculate projection u = { u 1, u 2 ¡Ä, u n } of the object u ? ?? ? to the eigen objects sub-space, or, in other words, restore the object u in that sub-space: m1 ô wk e l + u l . k ul = ? k=1 For examples of use of the functions and relevant data types see Image Recognition Reference Chapter. **Embedded Hidden Markov Models [#fc902c60] This section describes functions for using Embedded Hidden Markov Models (HMM) in face recognition task. See Reference for HMM Structures. 5-2
¥¿¥¤¥à¥¹¥¿¥ó¥×¤òÊѹ¹¤·¤Ê¤¤
quotation@opencv-1.0.0/docs/opencvman_old.pdf *5 Object Recognition [#y165de99] **Eigen Objects [#oaf5f32d] This section describes functions that operate on eigen objects. Let us define an object u = { u 1, u 2 ¡Ä, u n } as a vector in the n-dimensional space. For example, u can be an image and its components ul are the image pixel values. In this case n is equal to the number of pixels in the image. Then, consider a group of input objects u i = { ui, u i, ¡Ä, u i } , where i = 1, ¡Ä, m and usually m << n. The averaged, or 1 2 n mean, object u = { u 1, u 2, ¡Ä, u n } of this group is defined as follows: m 1 ô ul . k u l = --- m k=1 m¡ßm Covariance matrix C = |cij| is a square symmetric matrix : n ô i j ( ul ? ul ) ? ( ul ? ul ) . c ij = l=1 Eigen objects basis e i = { e i, ei, ¡Ä, e i } , i = 1, ¡Ä , m1 ? m of the input objects group 1 2 n may be calculated using the following relation: m 1 ô vk ? ( ul ? ul ) , i i k = --------- - el ¦Ëi k=1 i i i i where ¦Ëi and = { v 1 , v2 , ¡Ä, v m } are eigenvalues and the corresponding eigenvectors v of matrix C. 5-1 Any input object ui as well as any other object u may be decomposed in the eigen objectsnm1-D sub-space. Decomposition coefficients of the object u are: ô el ? ( u l ? u l ) . i wi = l=1 Using these coefficients, we may calculate projection u = { u 1, u 2 ¡Ä, u n } of the object u ? ?? ? to the eigen objects sub-space, or, in other words, restore the object u in that sub-space: m1 ô wk e l + u l . k ul = ? k=1 For examples of use of the functions and relevant data types see Image Recognition Reference Chapter. **Embedded Hidden Markov Models [#fc902c60] This section describes functions for using Embedded Hidden Markov Models (HMM) in face recognition task. See Reference for HMM Structures. 5-2
¥Æ¥¥¹¥ÈÀ°·Á¤Î¥ë¡¼¥ë¤òɽ¼¨¤¹¤ë